

Product Summary

V_R = 650 V I_F = 8A (T_C=150°C) Qc = 23nC (V_R=400V)

Features

- Zero Forward/Reverse Recovery Current
- High Blocking Voltage
- High Frequency Operation
- Positive Temperature Coefficient on V_F
- Temperature Independent Switching Behavior

Applications

- Motor Drives
- Solar Inverters

Benefits

- Higher System Efficiency
- Parallel Device Convenience without thermal runaway

2 3

TO-220-2

- Higher Temperature Application
- No Switching loss
- Hard Switching & Higher Reliability
- Environmental Protection
- AC/DC converters
- DC/DC converters
- Uninterruptable power supplies

Maximum Ratings (T_c=25°C unless otherwise specified)

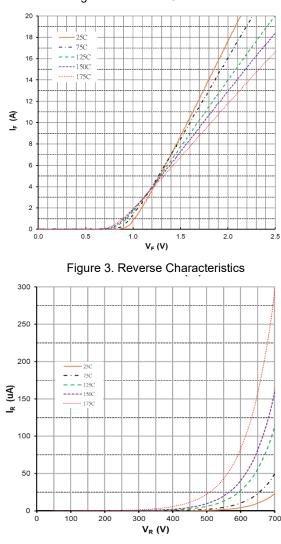
Parameter	Symbol	Test conditions	Value	Unit
Peak Repetitive Reverse Voltage	V _{RRM}		650	V
Peak Reverse Surge Voltage	V _{RSM}		650	V
DC Blocking Voltage	V _R		650	V
Continuous Forward Current	١ _F	Tc=25°C	30	Α
		T _c =135°C	14	
		Tc=150°C	8	
Non repetitive Forward Surge Current	I _{FSM}	T _C = 25°C, t _P =10 ms, Half Sine Pulse	60	A
		T _C = 110°C, t _p =10 ms, Half Sine Pulse	50	
		T _C = 25°C, t _p =10 μs, Square	300	
Repetitive peak Forward Surge Current	I _{FRM}	T _C = 25°C, t _p =10 ms, Freq = 0.1Hz, 100 cycles,	50	A
		Half Sine Pulse T _C = 110°C, t _P =10 ms, Freq = 0.1Hz, 100 cycles, Half Sine Pulse	40	
Total power dissipation	PD	T _c =25°C	94	W
Operating Junction Temperature	ΤJ		-55 to 175	°C
Storage Temperature	T _{STG}		-55 to 175	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

Revision 1.0

Electrical Characteristics

Parameter	Symbol	Test conditions	Min	Тур	Max	Unit
DC Blocking Voltage	V _{DC}	I _R = 250μA,T _J = 25°C	650			V
		I _F = 8A, T _J = 25°C		1.4	1.7	V
Forward Voltage	VF	I _F = 8A, T _J = 125°C		1.5		
		I _F = 8A, T _J = 175°C		1.65		V
		V _R = 650V, T _J = 25°C		10	80	uA
Reverse Current	I _R	V _R = 650V, T _J = 125°C		50		uA
		V _R = 650V, T _J = 175°C		150		uA
Total Capacitive Charge	Qc	$V_{R} = 400V$		23		nC
		T _J = 25°C				
Total Capacitance	С	V _R = 1V, T _J = 25°C, Freq = 1MHz		380		
		$V_{R} = 200V, T_{J} = 25^{\circ}C,$		48	1	pF
		Freq = 1MHz	-	-	4	'
		$V_{\rm R} = 400 V, T_{\rm J} = 25^{\circ} C,$		31		
		Freq = 1MHz				


Note: This is a majority carrier diode, so there is no reverse recovery charge

Thermal Characteristics

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Thermal Resistance	R _{th(j-c)}	_{c)} junction-case		1.6		⁰ C/W

Typical Electrical Curves

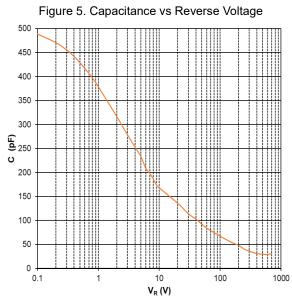


Figure 1. Forward Characteristics

Figure 2. Forward Characteristics

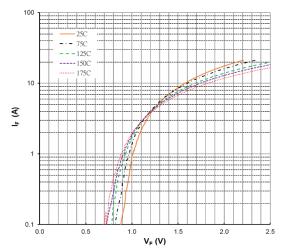


Figure 4. Power Derating

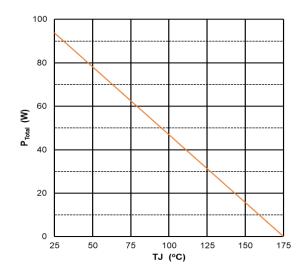
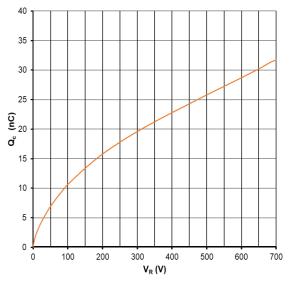
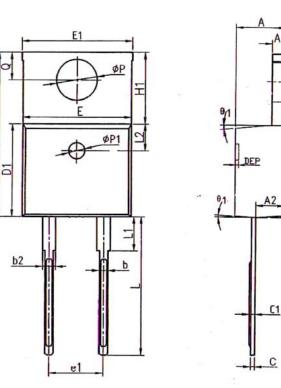



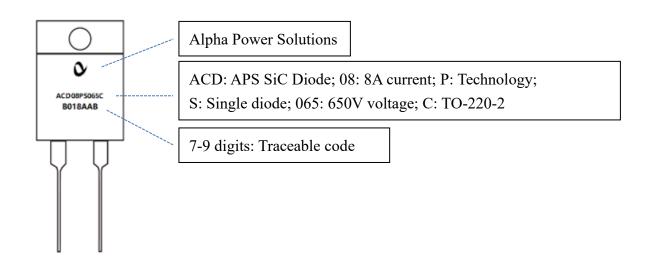
Figure 6. Recovery Charge vs Reverse Voltage

P.3 of 4

Revision 1.0


This document is the property of ALPHA POWER SOLUTIONS LIMITED, and not allowed to copy or transformed to other format if not under the authority approval.

ACD08PS065C Silicon Carbide Schottky Diode


Package Dimensions

(TO-220-2 Package)

SYMBOL	ММ			INCH		
	MIN	NOM	MAX	MUN	NOM	MAX
A	4.40	4.57	4.70	0.173	0.180	0.185
A1	1.22	1.27	1.32	0.048	0.050	0.052
A2	2.59	2.69	2.79	0.102	0.106	0.110
b	0.77	0.813	0.90	0.030	0.032	0.035
b2	1.20	1.27	1.36	0.047	0.050	0.054
C	0.34	0.381	0.47	0.013	0.015	0.019
c1	0.40	0.559	0.60	0.016	0.022	0.024
D	14.70	15.00	15.30	0.579	0.591	0.602
D1	8.60	8.70	8.80	0.339	0.343	0.346
E	10.06	10.16	10.26	0.396	0.400	0.404
E1	10.10	10.25	10.35	0.398	0.404	0.407
E2	10.00	10.10	10.20	0.394	0.398	0.402
e	2.54 BSC			0.100 BSC		
e1		5.08	BSC		0.200 BSC	
H1	6.10	6.30	6.50	0.240	0.248	0.256
L	13.20	13.40	13.50	0.520	0.528	0.531
L1		3.75	4.00		0.148	0.157
L2	2.50 REF				0.098	REF
ΦΡ	3.76	3.84	3.88	0.148	0.151	0.153
Q	2.60	2.743	2.90	0.102	0.108	0.114
01	5*	7*	9*	5*	7*	9*
82	1*	3*	5*	1*	3*	5"
ΦΡ1	1.40	1.50	1.60	0.055	0.059	0.063
DEP	0.05	0.10	0.20	0.002	0.004	0.008

Part Number	Package	Packing	Marking	M.O.Q
ACD08PS065C	TO-220-2	50pcs / Tube	ACD08PS065C	500

Revision 1.0

This document is the property of ALPHA POWER SOLUTIONS LIMITED, and not allowed to copy or transformed to other format if not under the authority approval.