

Product Summary

 $V_R = 1200 \text{ V}$ $I_F = 10A (T_C=150^{\circ}C)$ $Qc = 52nC (V_R=800V)$

TO-247-2

Features

- Zero Forward/Reverse Recovery Current
- High Blocking Voltage
- High Frequency Operation
- Positive Temperature Coefficient on V_F
- Temperature Independent Switching Behavior
- · High surge current capability

Applications

- Motor Drives
- Solar / Wind Inverters

Benefits

- Higher System Efficiency
- Parallel Device Convenience without thermal runaway
- Higher Temperature Application
- No Switching loss
- Hard Switching & Higher Reliability
- Environmental Protection
- AC/DC converters
- DC/DC converters
- Uninterruptable power supplies

Maximum Ratings (T_C=25°C unless otherwise specified)

Parameter	Symbol	Test conditions	Value	Unit
Peak Repetitive Reverse Voltage	V_{RRM}		1200	V
Peak Reverse Surge Voltage	V_{RSM}		1200	V
DC Blocking Voltage	V_R		1200	V
Continuous Forward Current	I _F	T _C =25°C	39	Α
		T _C =135°C	17	
		T _C =150°C	10	
Non repetitive Forward Surge Current	I_{FSM}	$T_C = 25^{\circ}C$, $t_p=10$ ms,	100	Α
		Half Sine Pulse		
		$T_C = 110^{\circ}C$, $t_p=10$ ms,	90	
		Half Sine Pulse		
Repetitive peak Forward Surge Current	I_{FRM}	$T_C = 25^{\circ}C$, $t_p=10$ ms,	90	Α
		Freq = 0.1Hz, 100 cycles,		
		Half Sine Pulse		
		$T_C = 110^{\circ}C$, $t_p=10$ ms,	80	
		Freq = 0.1Hz, 100 cycles, Half Sine Pulse		
Total naver dissination	P _D	T _C =25°C	188	W
Total power dissipation	PD	T _C =110°C		VV
0: 1 5 1 4 1 5			81	
Single Pulse Avalanche Energy	E _{AS}	L=2mH, I _{AS} =A	100	mJ
Diode dv/dt ruggedness	dv/dt	V _R = 0-1200V	80	V/ns
Operating Junction Temperature	TJ		-55 to 175	°C
Storage Temperature	T _{STG}		-55 to 175	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

Revision 1.0 P.1 of 4

Electrical Characteristics

Parameter	Symbol	Test conditions	Min	Тур	Max	Unit
DC Blocking Voltage	V_{DC}	T _J = 25°C	1200			V
Forward Voltage	V _F	$I_F = 10A, T_J = 25^{\circ}C$		1.45	1.8	V
		$I_F = 10A, T_J = 125^{\circ}C$		1.8		V
		$I_F = 10A, T_J = 175^{\circ}C$		2.0		V
	I _R	$V_R = 1200V, T_J = 25^{\circ}C$		5	200	uA
Reverse Current		$V_R = 1200V, T_J = 125$ °C		15	250	uA
		$V_R = 1200V, T_J = 175^{\circ}C$		60	300	uA
Total Capacitive Charge	Qc	$V_R = 800V, T_J = 25^{\circ}C$		52		nC
Total Capacitance	С	V_R = 1V, T_J = 25°C, Freq = 1MHz		590		
		V_R = 400V, T_J = 25°C, Freq = 1MHz		53		pF
		V_R = 800V, T_J = 25°C, Freq = 1MHz		34		

Note: This is a majority carrier diode, so there is no reverse recovery charge

Thermal Characteristics

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Thermal Resistance	R _{th(j-c)}	junction-case		8.0		°C/W

Revision 1.0 P.2 of 4

Typical Electrical Curves

Figure 1. Forward Characteristics

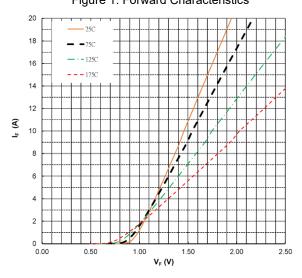


Figure 3. Reverse Characteristics

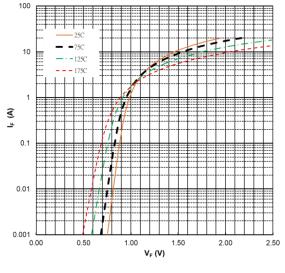


Figure 2. Forward Characteristics

Figure 4. Power Derating

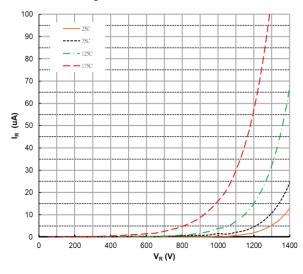
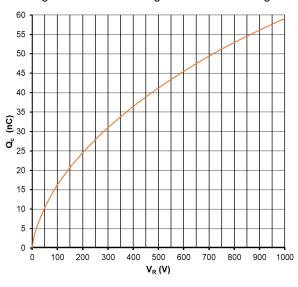
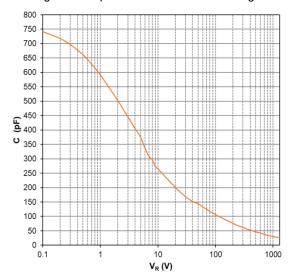
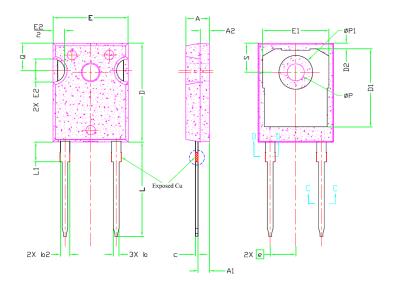




Figure 5. Reverse charge vs. Reverse Voltage

200 175 150 125 100 75 50 25 50 75 100 125 150 175 T_J (°C)

Figure 6. Capacitance vs. Reverse Voltage


Revision 1.0 P.3 of 4

This document is the property of ALPHA POWER SOLUTIONS LIMITED, and not allowed to copy or transformed to other format if not under the authority approval.

Package Dimensions

(TO-247-2 Package)

SYMBOL	DIMENSIONS			NOTES
STWIDGE	MIN.	NOM.	MAX.	NOTES
Α	4.83	5.02	5.21	
A1	2.29	2.41	2.55	
A2	1.50	2.00	2.49	
b	1,12	1,20	1,33	
b1	1.12	1.20	1.28	
b2	1.91	2.00	2.39	6
b3	1,91	2,00	2,34	
С	0.55	0.60	0.69	6
c1	0.55	0.60	0.65	
D	20,80	20,95	21,10	4
D1	16.25	16.55	17.65	5
D2	0.51	1.19	1.35	
E	15.75	15,94	16,13	4
E1	13.46	14.02	14.16	5
E2	4.32	4.91	5.49	3
е	5.44BSC			
L	19.81	20.07	20.32	
L1	4.10	4.19	4.40	6
ØP	3.56	3.61	3.65	7
ØP1	7.19REF			
Q	5,39	5,79	6,20	
S	6.04	6.17	6.30	

- Note:

 1. Package Reference: JEDEC TO247, Variation AD.

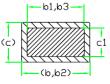
 2. All Dimensions Are In mm.

 3. Slot Required, Notch May Be Rounded

 4. Dimension D & E Do Not Include Mold Flash. Mold Flash Shall Not Exceed 0.127mm Pre Side. These Dimensions Are Measured At The Outermost Extreme Of The Plastic Body.

 5. Tharmal Pad Contra Optional Within Dimension D1 & E1.

- At The Outermost Extreme Of The Plastic Body.


 5. Thermal Pad Contour Optional Within Dimension D1 & E1.

 6. Lead Finish Uncontrolled In L1.

 7. ØP To Have A Maximum Draft Angle Of 1.5° To The Top Of The Part With A Maximum Hole Diameter Of 3.91mm.

 8. Dimension "b2" And "b4" Does Not Include Dambar Protrusion.

 Allowable Dambar Protrusion Shall Be 0.10mm Total In Excess Of "b2" And "b4" Dimension At Maximum Material Condition.

Revision 1.0 P.4 of 4